
ICP
Internet Computer koers
$5,7790
+$0,070000
(+1,22%)
Prijsverandering voor de afgelopen 24 uur

Wat vind je vandaag van ICP?
Deel je mening hier door een duim omhoog te geven als je je bullish voelt over een munt of een duim omlaag als je je bearish voelt.
Stem om resultaten te bekijken
Internet Computer marktinformatie
Marktkapitalisatie
Marktkapitalisatie wordt berekend door het circulerende aanbod van een munt te vermenigvuldigen met de laatste prijs.
Marktkapitalisatie = Circulerend aanbod × Laatste prijs
Marktkapitalisatie = Circulerend aanbod × Laatste prijs
Circulerend aanbod
Totale bedrag van een munt dat openbaar beschikbaar is op de markt.
Positie marktkapitalisatie
De positie van een munt in termen van marktkapitalisatie.
Historisch hoogtepunt
Hoogste prijs die een munt heeft bereikt in zijn handelsgeschiedenis.
Historisch dieptepunt
Laagste prijs die een munt heeft bereikt in zijn handelsgeschiedenis.
Marktkapitalisatie
$2,78B
Circulerend aanbod
481.781.633 ICP
90,78% van
530.657.594 ICP
Positie marktkapitalisatie
--
Audits

Laatste audit: 19 apr 2021
24u hoog
$5,7910
24u laag
$5,6050
Historisch hoogtepunt
$750,00
-99,23% (-$744,22)
Laatste update: 11 mei 2021
Historisch dieptepunt
$2,8240
+104,63% (+$2,9550)
Laatste update: 22 sep 2023
ICP-calculator


Prestatie Internet Computer-koers in USD
De huidige koers van Internet Computer is $5,7790. Gedurende de afgelopen 24 uur, Internet Computer is met toegenomen tegen +1,23%. Het heeft momenteel een circulerend aanbod van 481.781.633 ICP en een maximaal aanbod van 530.657.594 ICP, waardoor het een volledig verwaterde marktkapitalisatie van $2,78B heeft. Op dit moment bezit de Internet Computer-munt, de 0 positie in de marktkapitalisatie positie. De Internet Computer/USD-prijs wordt in real time geüpdatet.
Vandaag
+$0,070000
+1,22%
7 dagen
+$0,0080000
+0,13%
30 dagen
-$1,2370
-17,64%
3 maanden
-$4,1460
-41,78%
Populaire Internet Computer-conversies
Laatste update: 23-03-2025, 00:58
1 ICP tot USD | $ 5,7790 |
1 ICP tot EUR | € 5,3143 |
1 ICP tot PHP | ₱ 331,25 |
1 ICP tot IDR | Rp 95.504,88 |
1 ICP tot GBP | £ 4,4748 |
1 ICP tot CAD | $ 8,3342 |
1 ICP tot AED | AED 21,2254 |
1 ICP tot VND | ₫ 147.838,3 |
Over Internet Computer (ICP)
De beoordeling is een algehele waardering die OKX verzamelt vanaf verschillende bronnen en is alleen bestemd voor intern gebruik. OKX geeft geen garantie wat betreft de kwaliteit of de nauwkeurigheid van een beoordeling. Deze is niet bedoeld als (i) beleggingsadvies of -aanbeveling, (ii) een aanbod voor of verzoek om digitale activa te kopen, te verkopen of aan te houden, of (iii) advies op het gebied van financiën, boekhouding of belastingen. Digitale activa, waaronder stablecoins en NFT's, brengen aanzienlijke risico’s met zich mee. Ze kunnen sterk fluctueren in waarde of zelfs waardeloos worden. De prijzen en bewegingen van digitale activa zijn onvoorspelbaar en kunnen zomaar veranderen. Je digitale activa zijn niet verzekerd tegen mogelijke verliezen. In het verleden behaalde resultaten bieden geen garantie voor de toekomst. OKX garandeert geen terugbetaling van de hoofdsom of rente. OKX geeft geen aanbevelingen voor investeringen of activa. Voordat je besluit om digitale activa te verhandelen of aan te houden, moet je zorgvuldig analyseren of jouw financiële situatie dit toelaat. Raadpleeg bij vragen hierover altijd een juridisch, fiscaal of beleggingsadviseur.
Verder lezen
- Officiële website
- Whitepaper
- Github
- Blokverkenner
Informatie over websites van derden
Informatie over websites van derden
Door de website van derden ('TPW') te gebruiken, aanvaard je dat elk gebruik van de TPW onderworpen is aan en geregeld wordt door de voorwaarden van de TPW. Tenzij uitdrukkelijk schriftelijk vermeld, zijn OKX en haar partners ('OKX') op geen enkele wijze verbonden met de eigenaar of exploitant van de TPW. Je stemt ermee in dat OKX niet verantwoordelijk of aansprakelijk is voor verlies, schade en andere gevolgen die voortvloeien uit je gebruik van de TPW. Houd er rekening mee dat het gebruik van een TPW kan leiden tot verlies of waardevermindering van je bezittingen.
Internet Computer Veelgestelde vragen
Hoe veel is één Internet Computer vandaag waard?
Momenteel is één Internet Computer de waarde van $5,7790. Voor antwoorden en inzicht in de prijsactie van Internet Computer ben je op de juiste plek. Ontdek de nieuwste Internet Computer grafieken en handel verantwoord met OKX.
Wat is cryptocurrency?
Cryptocurrency's, zoals Internet Computer, zijn digitale bezittingen die op een openbaar grootboek genaamd blockchains werken. Voor meer informatie over munten en tokens die op OKX worden aangeboden en hun verschillende kenmerken, inclusief live-prijzen en grafieken in real time.
Wanneer zijn cryptocurrency's uitgevonden?
Dankzij de financiële crisis van 2008 nam de belangstelling voor gedecentraliseerde financiën toe. Bitcoin bood een nieuwe oplossing door een veilige digitale bezitting te zijn op een gedecentraliseerd netwerk. Sindsdien zijn er ook veel andere tokens zoals Internet Computer aangemaakt.
Zal de prijs van Internet Computer vandaag stijgen?
Bekijk onze Internet Computer Prijsvoorspellingspagina om toekomstige prijzen te voorspellen en je prijsdoelen te bepalen.
ESG-vermelding
ESG-regelgeving (Environmental, Social, and Governance) voor crypto-bezit is gericht op het aanpakken van hun milieu-impact (bijv. energie-intensieve mining), het bevorderen van transparantie en het waarborgen van ethische bestuurspraktijken om de crypto-industrie op één lijn te brengen met bredere duurzaamheids- en maatschappelijke doelen. Deze regels stimuleren de naleving van normen die risico's beperken en het vertrouwen in digitale bezitting bevorderen.
Details bezittingen
Naam
OKcoin Europe LTD
Identificatiecode relevante juridische entiteit
54930069NLWEIGLHXU42
Naam van het crypto-bezit
Internet Computer Token
Consensusmechanisme
Internet Computer Token is present on the following networks: ethereum, internet_computer.
The Ethereum network uses a Proof-of-Stake Consensus Mechanism to validate new transactions on the blockchain. Core Components 1. Validators: Validators are responsible for proposing and validating new blocks. To become a validator, a user must deposit (stake) 32 ETH into a smart contract. This stake acts as collateral and can be slashed if the validator behaves dishonestly. 2. Beacon Chain: The Beacon Chain is the backbone of Ethereum 2.0. It coordinates the network of validators and manages the consensus protocol. It is responsible for creating new blocks, organizing validators into committees, and implementing the finality of blocks. Consensus Process 1. Block Proposal: Validators are chosen randomly to propose new blocks. This selection is based on a weighted random function (WRF), where the weight is determined by the amount of ETH staked. 2. Attestation: Validators not proposing a block participate in attestation. They attest to the validity of the proposed block by voting for it. Attestations are then aggregated to form a single proof of the block’s validity. 3. Committees: Validators are organized into committees to streamline the validation process. Each committee is responsible for validating blocks within a specific shard or the Beacon Chain itself. This ensures decentralization and security, as a smaller group of validators can quickly reach consensus. 4. Finality: Ethereum 2.0 uses a mechanism called Casper FFG (Friendly Finality Gadget) to achieve finality. Finality means that a block and its transactions are considered irreversible and confirmed. Validators vote on the finality of blocks, and once a supermajority is reached, the block is finalized. 5. Incentives and Penalties: Validators earn rewards for participating in the network, including proposing blocks and attesting to their validity. Conversely, validators can be penalized (slashed) for malicious behavior, such as double-signing or being offline for extended periods. This ensures honest participation and network security.
The Internet Computer Protocol (ICP) uses a unique consensus mechanism called Threshold Relay combined with Chain Key Technology to ensure decentralized, scalable, and secure operations for its network. Core Components of ICP’s Consensus Mechanism: 1. Threshold Relay: Threshold Relay is a consensus protocol that enables the network to achieve finality without a traditional Proof-of-Work or Proof-of-Stake mechanism. It leverages a group of nodes called "the committee" to generate a random beacon that is used for the selection of the next block producer. The protocol is designed to provide scalability and speed while maintaining decentralization by allowing any node to join the consensus process. The key feature of Threshold Relay is that it utilizes a threshold signature scheme, where a group of nodes must collaborate to create a valid signature, ensuring that consensus is achieved even in the presence of faulty or malicious nodes. 2. Chain Key Technology: Chain Key Technology is used to manage the state of the Internet Computer, allowing it to scale effectively across a vast number of nodes while still providing fast and secure transaction finality. This technology enables the creation and management of many independent blockchains (also known as subnet blockchains), each with its own set of validators. Chain Key Technology allows the Internet Computer to support billions of smart contracts without compromising speed, as it facilitates quick communication between the subnets and enables cross-chain interoperability. 3. Canister Smart Contracts: The Internet Computer utilizes a decentralized model where the computation of canister smart contracts (which hold the application logic) occurs across different nodes in the network. These canisters can run autonomously and scale with the network’s growth. Finality and Security: • The consensus mechanism ensures finality once a transaction is validated, meaning that once a block is added, it cannot be reverted, providing the security required for high-stakes applications. • The use of Threshold Relay provides robust Byzantine Fault Tolerance (BFT), enabling the network to tolerate faulty or malicious behavior without compromising network integrity.
Stimuleringsmechanismen en toepasselijke vergoedingen
Internet Computer Token is present on the following networks: ethereum, internet_computer.
Ethereum, particularly after transitioning to Ethereum 2.0 (Eth2), employs a Proof-of-Stake (PoS) consensus mechanism to secure its network. The incentives for validators and the fee structures play crucial roles in maintaining the security and efficiency of the blockchain. Incentive Mechanisms 1. Staking Rewards: Validator Rewards: Validators are essential to the PoS mechanism. They are responsible for proposing and validating new blocks. To participate, they must stake a minimum of 32 ETH. In return, they earn rewards for their contributions, which are paid out in ETH. These rewards are a combination of newly minted ETH and transaction fees from the blocks they validate. Reward Rate: The reward rate for validators is dynamic and depends on the total amount of ETH staked in the network. The more ETH staked, the lower the individual reward rate, and vice versa. This is designed to balance the network's security and the incentive to participate. 2. Transaction Fees: Base Fee: After the implementation of Ethereum Improvement Proposal (EIP) 1559, the transaction fee model changed to include a base fee that is burned (i.e., removed from circulation). This base fee adjusts dynamically based on network demand, aiming to stabilize transaction fees and reduce volatility. Priority Fee (Tip): Users can also include a priority fee (tip) to incentivize validators to include their transactions more quickly. This fee goes directly to the validators, providing them with an additional incentive to process transactions efficiently. 3. Penalties for Malicious Behavior: Slashing: Validators face penalties (slashing) if they engage in malicious behavior, such as double-signing or validating incorrect information. Slashing results in the loss of a portion of their staked ETH, discouraging bad actors and ensuring that validators act in the network's best interest. Inactivity Penalties: Validators also face penalties for prolonged inactivity. This ensures that validators remain active and engaged in maintaining the network's security and operation. Fees Applicable on the Ethereum Blockchain 1. Gas Fees: Calculation: Gas fees are calculated based on the computational complexity of transactions and smart contract executions. Each operation on the Ethereum Virtual Machine (EVM) has an associated gas cost. Dynamic Adjustment: The base fee introduced by EIP-1559 dynamically adjusts according to network congestion. When demand for block space is high, the base fee increases, and when demand is low, it decreases. 2. Smart Contract Fees: Deployment and Interaction: Deploying a smart contract on Ethereum involves paying gas fees proportional to the contract's complexity and size. Interacting with deployed smart contracts (e.g., executing functions, transferring tokens) also incurs gas fees. Optimizations: Developers are incentivized to optimize their smart contracts to minimize gas usage, making transactions more cost-effective for users. 3. Asset Transfer Fees: Token Transfers: Transferring ERC-20 or other token standards involves gas fees. These fees vary based on the token's contract implementation and the current network demand.
The Internet Computer Protocol (ICP) incentivizes network participants (validators, node operators, and canister developers) through various reward mechanisms and transaction fees. Here's a breakdown of the incentive mechanisms and applicable fees related to ICP: Incentive Mechanism: 1. Network Participation and Rewards: Validators: Validators are crucial for maintaining the integrity and security of the network. They stake ICP tokens to participate in consensus and are rewarded for validating blocks, maintaining the integrity of the decentralized network, and ensuring its performance. Rewards for validators are based on their participation in the consensus mechanism and their stake in the network. Node Operators: Node operators who maintain the physical infrastructure of the network (such as hardware and server resources) are also rewarded. These operators run the nodes that participate in the Threshold Relay and provide computational power to the network. 2. Canister Developers and Network Participants: Canister Smart Contracts: Developers of canisters (smart contracts) on the Internet Computer are incentivized through the creation of decentralized applications (dApps). Developers may also benefit from transaction fees generated by the usage of their dApps and the deployment of smart contracts on the network. Usage Fees: Users of decentralized applications (dApps) or canisters are incentivized to pay for their usage through fees. These fees are often paid in ICP tokens, and developers can receive a share of these fees based on the usage of their deployed applications. 3. Governance: The ICP Token is used for governance via the Network Nervous System (NNS), where holders of ICP tokens participate in decisions regarding the protocol, such as network upgrades, incentive adjustments, and the allocation of funds. Token holders are rewarded with the ability to influence the future of the network. 4. Staking Rewards: Staking: ICP token holders can participate in staking their tokens in the NNS, which influences network consensus and governance. By participating in staking, they help secure the network and are rewarded with staking rewards (a form of passive income). The staking rewards are given to token holders who participate in securing the network via the NNS. Applicable Fees: 1. Transaction Fees: Canister Calls: Every interaction with a canister (smart contract) on the Internet Computer incurs a transaction fee. These fees are typically paid in ICP tokens and are used to cover the computational resources required to process requests, store data, and manage execution. Fee Structure: Transaction fees depend on the complexity and resources consumed by the canister call or network operation. For example, operations that require more computational power or data storage may incur higher fees. 2. Storage Fees: Canister Data Storage: Developers and users who deploy applications on the Internet Computer are required to pay fees for storing data. These fees ensure that network resources are used efficiently and that canisters do not waste storage space. The cost of storage is typically paid in ICP tokens. 3. Governance Participation Fees: Voting and Proposal Fees: Participation in the governance process via the NNS (Network Nervous System) may require a small fee, depending on the type of governance action (such as submitting a proposal or voting). These fees ensure that governance is distributed and prevent spam attacks on the governance system. 4. Node and Validator Fees: Fees for Node Operations: Node operators who provide computational power to the network may incur costs related to maintaining hardware and operating nodes. These fees are partially offset by rewards for providing network resources.
Begin van de periode waarop de informatieverschaffing betrekking heeft
2024-03-12
Einde van de periode waarop de informatie betrekking heeft
2025-03-12
Energierapport
Energieverbruik
5834160.00000 (kWh/a)
Verbruik van hernieuwbare energie
16.500000000 (%)
Energie-intensiteit
0.00720 (kWh)
Belangrijkste energiebronnen en -methodologieën
To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from the European Environment Agency (EEA) and thus determined.
Energieverbruiksbronnen en -methodologieën
The energy consumption of this asset is aggregated across multiple components:
For the calculation of energy consumptions, the so called “bottom-up” approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation.
To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. Based on the crypto asset's gas consumption per network, the share of the total consumption of the respective network that is assigned to this asset is defined. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation.
Rapport over emissies
Scope 1 broeikasgasemissies van DLT - Gecontroleerd
0.00000 (tCO2e/a)
Scope 2 broeikasgasemissies van DLT - Ingekocht
2047.79016 (tCO2e/a)
Intensiteit broeikasgassen
0.00253 (kgCO2e)
Belangrijkste bronnen van broeikasgassen en -methodologieën
To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from the European Environment Agency (EEA) and thus determined.
Disclaimer
De sociale inhoud op deze pagina ('Inhoud'), inclusief maar niet beperkt tot tweets en statistieken geleverd door LunarCrush, is afkomstig van derden en wordt 'as is' geleverd voor informatieve doeleinden. OKX garandeert de kwaliteit of nauwkeurigheid van de Inhoud niet en de Inhoud vertegenwoordigt niet de standpunten van OKX. Het is niet bedoeld voor (i) beleggingadvies of aanbeveling; (ii) een aanbod of verzoek om digitale bezittingen te kopen, verkopen of bezitten; of (iii) financieel, boekhoudkundig, juridisch of fiscaal advies. Digitale bezittingen, waaronder stablecoins en NFT's, brengen een hoge mate van risico met zich mee en kunnen sterk fluctueren. De prijs en prestaties van de digitale bezittingen zijn niet gegarandeerd en kunnen zonder kennisgeving veranderen. OKX geeft geen aanbevelingen voor beleggingen of bezittingen. U moet zorgvuldig overwegen of het verhandelen of bezitten van digitale bezittingen geschikt voor u is in het licht van uw financiële situatie. Raadpleeg uw juridische/ fiscale/ beleggingsexpert voor vragen over uw specifieke omstandigheden. Raadpleeg voor meer informatie onze Gebruiksvoorwaarden en Risicowaarschuwing. Door de website van derden ('TPW') te gebruiken, aanvaardt u dat elk gebruik van de TPW onderhevig is aan en geregeld wordt door de voorwaarden van de TPW. Tenzij uitdrukkelijk schriftelijk vermeld, zijn OKX en haar partners ('OKX') op geen enkele wijze verbonden met de eigenaar of exploitant van de TPW. U stemt ermee in dat OKX niet verantwoordelijk of aansprakelijk is voor verlies, schade en andere gevolgen die voortvloeien uit uw gebruik van de TPW. Wees u ervan bewust dat het gebruik van een TPW kan leiden tot verlies of waardevermindering van uw bezittingen.
ICP-calculator

