ICP
ICP

Internet Computer 价格

$5.7700
+$0.12600
(+2.23%)
过去 24 小时的价格变化
USDUSD
您感觉 ICP 今天会涨还是会跌?
您可以通过点赞或点踩来分享对该币种今天的涨跌预测
投票并查看结果

Internet Computer 市场信息

市值
市值是通过流通总应量与最新价格相乘进行计算。市值 = 当前流通量 × 最新价
流通总量
目前该代币在市场流通的数量
市值排行
该资产的市值排名
历史最高价
该代币在交易历史中的最高价格
历史最低价
该代币在交易历史中的最低价格
市值
$27.77亿
流通总量
481,783,342 ICP
530,659,303 ICP
的 90.78%
市值排行
30
审计方
CertiK
最后审计日期:2021年4月19日
24 小时最高
$5.8280
24 小时最低
$5.6160
历史最高价
$750.00
-99.24% (-$744.23)
最后更新日期:2021年5月11日
历史最低价
$2.8240
+104.32% (+$2.9460)
最后更新日期:2023年9月22日

ICP 计算器

USDUSD
ICPICP

Internet Computer 价格表现 (美元)

Internet Computer 当前价格为 $5.7700。Internet Computer 的价格在过去 24 小时内上涨了 +2.23%。目前,Internet Computer 市值排名为第 30 名,实时市值为 $27.77亿,流通供应量为 481,783,342 ICP,最大供应量为 530,659,303 ICP。我们会实时更新 Internet Computer/USD 的价格。
今日
+$0.12600
+2.23%
7 天
-$0.04800
-0.83%
30 天
-$1.3310
-18.75%
3 个月
-$5.0060
-46.46%

关于 Internet Computer (ICP)

4.4/5
Certik
4.4
2025/03/21
CyberScope
4.4
2025/03/22
此评级是欧易从不同来源收集的汇总评级,仅供一般参考。欧易不保证评级的质量或准确性。欧易无意提供 (i) 投资建议或推荐;(ii) 购买、出售或持有数字资产的要约或招揽;(iii) 财务、会计、法律或税务建议。包括稳定币和 NFT 的数字资产容易受到市场波动的影响,风险较高,波动较大,可能会贬值甚至变得一文不值。数字资产的价格和性能不受保证,且可能会发生变化,恕不另行通知。您的数字资产不受潜在损失保险的保障。 历史回报并不代表未来回报。欧易不保证任何回报、本金或利息的偿还。欧易不提供投资或资产建议。您应该根据自身的财务状况仔细考虑交易或持有数字资产是否适合您。具体情况请咨询您的专业法务、税务或投资人士。
展开更多
  • 官网
  • 白皮书
  • Github
  • 区块浏览器
  • 关于第三方网站
    关于第三方网站
    通过使用第三方网站(“第三方网站”),您同意对第三方网站的任何使用均受第三方网站条款的约束和管辖。除非书面明确说明,否则 OKX 及其关联方(“OKX”)与第三方网站的所有者或运营商没有任何关联。您同意 OKX 对您使用第三方网站而产生的任何损失、损害和任何其他后果不承担任何责任。请注意,使用第三方网站可能会导致您的资产损失或贬值。

Internet Computer 协议是一个创新的、去中心化的区块链网络,旨在使区块链技术对公众开放。它寻求扩大智能合约的能力,并将公共互联网转变为全球云计算平台。


针对区块链技术最常见的批评之一是为了获得广泛采用,它需要更快、更方便。Internet Computer协议旨在通过使区块链功能以网速可用来解决这个问题。同时,确保交易在1秒内完成,并支付微量的GAS费用。它还为直接在公共互联网上部署智能合约代码提供了无障碍的开发人员环境。这简化了应用程序开发人员和用户的体验。


Internet Computer协议网络的架构旨在为独立的数据中心提供通信的灵活性,并提供一个完全去中心化的云计算平台。Internet Computer协议团队的主要目标之一是减少社会对中心化替代方案的依赖,如亚马逊网络服务和谷歌云服务器。


加密货币ICP是 Internet Computer协议生态系统的原生代币,它需要就决定项目方向的治理问题进行投票。持有ICP还可以获得持续的加密货币奖励。入股ICP可以减少卖出压力,并有助于支撑代币的价格。


Internet Computer协议的运行方式?

Internet Computer 网络背后的核心思想是创建一个独特的、去中心化的互联网和一个全球性的云计算系统,由互连的、独立的数据中心提供动力,以与中心化云提供商(如Amazon Web Services、谷歌cloud和Microsoft Azure)竞争。


许多人认为目前的互联网存在一个问题,因为它是中心化的,而且流行的应用程序都是近源的,并且保持技术的私密性。由于互联网的大部分存储需求由少数大型的中心化提供商提供,如果一个主要数据中心出现故障,许多企业和用户可能无法使用这些服务。中心化云存储的另一个主要缺点是,集中式提供商有权随意审查或关闭其托管的应用程序。


Internet Computer 协议想要改变这一切。Internet Computer 网络试图创建一个替代版本的互联网,允许开发者使用去中心化服务来托管他们的应用程序,而不用担心审查、去平台化或用户数据丢失。这是为了进一步鼓励全球开源和透明的软件开发。


任何有兴趣的个人或数据中心,如果有必要的存储容量,并希望以存储节点操作员的身份加入该网络,都可以自由加入。他们为提供的存储空间付费,并进一步获得象征性代币的奖励。


区块链密钥技术

Internet Computer协议链中最基本的新实现之一是对链密钥技术的重新设想。Internet Computer协议网络利用单一公钥,这使得链可以快速部署数百万个节点。凭借其独特的链密钥技术,任何设备,如手机或平板电脑,都可以确认链上事件的真实性。


反GAS费用模型

虽然大多数区块链都要求用户支付Gas费才能完成交易,但Internet Computer协议采用了一种新颖的反Gas费模型。开发人员付费使用这种机制在Internet Computer协议上运行的去中心化应用程序(DApps)。因此,非技术人员可以与区块链技术交互,而不需要特定的加密货币。这使得这项技术更容易获得,并降低了用户的准入门槛。


Motoko智能合约语言

DFINITY为智能合约开发了一种新的编程语言Motoko。它使得使用区块链的独特功能更加简单,并且可以轻松地适应互联网计算机协议的思想,实现完全去中心化的区块链协议。自动内存管理、泛型、类型推断、模式匹配以及任意和固定精度算术都是Motoko的生产力和安全特性的例子。


加密货币ICP的价格及其经济模型

根据Coinmarketcap的数据,Internet Computer市值20亿美元,流通供应量2.537亿枚代币,截止目前,在全球市值排名第30位的加密货币左右。ICP的总供应量约为4.88亿份,使其完全稀释后的市值接近40亿美元。创建ICP代币并将其作为对提案进行投票和管理存储节点的参与者的奖励。


Internet Computer协议还利用另一种称为“循环”的代币,它是从加密货币ICP转换而来的,用于支持算力。


Internet Computer协议在几年的时间里进行了几轮融资,为该项目建立了初步的早期支持。据Messari称,第一轮融资已于2017年2月完成,成功筹集了400多万美元用于网络的后续发展。随后在2018年2月和8月的代币销售筹集了超过1.17亿美元。


早期投资者能够在融资轮中以每枚0.035美元的价格购买ICP代币。投机者认为,这就是在ICP代币价格走势中可见的强大抛售压力和当代币以每ICP 365美元公开交易时 Internet Computer议价格下跌的原因。


ICP代币的最初分发几乎全部分配给了Internet Computer 协议团队和早期投资者。ICP代币的分配方式如下:

-天使轮: 24.72%

-DFINITY 基金会: 23.86%

-Internet Computer协议团队成员: 18.00%

-早期贡献者: 9.50%

-战略合作伙伴: 7.00%

-预售买家: 4.96%

-Internet Computer 协议社区: 4.26%

-合作伙伴: 3.79%

-相关第三年代币顾问及投资者: 2.40%

-ICP社区空投: 0.80%

-推广商务及社区补助基金: 0.48%

-网络节点算力: 0.22%


创始人团队

Internet Computer 协议网络是由DFINITY基金会建立和发展的,这是一个专注于科学追求的非营利性研究基金会。DFINITY基金会最初由Dominic Williams创建,他担任创始人和首席科学家的角色。Williams是公认和著名的加密理论家,因发明了创新的加密概念,如阈值中继和概率槽共识。


在创立DFINITY基金会并推出互联网计算机协议之前,威廉姆斯是String Labs的总裁和首席技术官,该公司是一家为新的加密初创公司提供服务的平台。他还成功地为儿童开发了网络游戏,支持了数百万用户。


DFINITY基金会位于瑞士苏黎世。它由密码学、编程和分布式系统的世界领导者组成。除了威廉姆斯,DFINITY基金会受益于一些行业最著名的技术专家的专业知识,包括:

-Jan Camenisch:密码学家和隐私研究员,曾领导IBM密码学和研究部门19年。

-Andreas Rossberg:WebAssembly的共同创建者

-Ben Lynn: 密码学家和谷歌工程师

-Jens Groth:密码学家,最著名的是开发了一些第一批非交互式零知识证明。

-Timo Hanke: 个算法比特币挖矿优化器

-Paul Liu: 拥有博士学位和工程师,设计了英特尔使用的Haskell编译器

-Johan Georg Granström: 曾在谷歌担任高级软件工程师,Granström还设计了YouTube的扩展基础设施。


Internet Computer协议已经从15家投资者那里获得了近1.67亿美元的融资,其中包括Andreessen Horowitz、9Yards Capital、Polychain、Aspect Ventures和Village Global。


DFINITY已经进行了三轮融资。他们最近的一次投资来自2018年8月28日的风险投资,融资1.02亿美元。此外,DFINITY于2022年1月20日向语音机器学习软件公司SPEEQO投资2.5万美元。


Internet Computer 协议的特点是什么?

拥有各种各样的独特功能,使其有别于其他流行的区块链。例如,因特网计算机协议(Internet Computer Protocol)是除比特币之外唯一由零中心化云计算节点操作的网络。相比之下,大约70%的以太坊节点和50%的Solana节点实际上由中心化机构(如Amazon Web Services和谷歌cloud Service)提供的云服务器托管。


Internet Computer协议旨在为公众提供更方便的使用体验。因此,它是唯一一个公共区块链,其中运行智能合约并直接向浏览器提供HTTP调用。换句话说,没有经验的用户将不知不觉地与Web3技术和区块链功能进行交互。


Internet Computer 协议简介

ICP/BTC 集成测试 API

2022年8月4日,DFINITY宣布发布ICP的比特币测试网应用程序编程接口(API)的beta版本,该接口可以与比特币网络直接交互,消除了中间人或桥梁的需要。通过集成的API,开发人员可以立即开始开发和测试。


ORIGYN NFT平台

ORIGYN基金会是一家瑞士公司,专门识别、认证和解锁NFT在奢侈品、美术、媒体和收藏品方面的潜力,它是最早开始在互联网计算机协议上构建的公司之一。在Impossible Things即将推出之前,ORIGYN发行了一个原生实用代币OGY,这是一个由ORIGYN驱动的交易NFT的市场,支持经过验证的资产,标志着ICP生态系统的重大发展。

展开更多
收起

Internet Computer 常见问题

什么是ICP?
ICP是Internet计算机协议生态系统的原生代币。它用于平台治理,可以转换为Cycles代币,为网络提供计算能力。
Internet Computer区块链网络有多快?
Internet Computer协议是世界上最快的公链之一,由于其创新的链密钥加密技术,每秒处理11,500笔交易,1秒完成交易。
谁在管理 Internet Computer区块链网络节点?
Internet Computer协议由分布在北美、欧洲和亚洲的48个数据中心支持,它运行着1,300个节点。到2022年底,该网络将拥有123个数据中心,每个中心有4,300个节点。节点经营操作可以是任何人。
ICP的历史最高值是多少?
2021年5月10日,ICP达到历史最高交易价格。当时的ICP嫁给为750美元每枚。
Internet Computer 今天值多少钱?
目前,一个 Internet Computer 价值是 $5.7700。如果您想要了解 Internet Computer 价格走势与行情洞察,那么这里就是您的最佳选择。在欧易探索最新的 Internet Computer 图表,进行专业交易。
数字货币是什么?
数字货币,例如 Internet Computer 是在称为区块链的公共分类账上运行的数字资产。了解有关欧易上提供的数字货币和代币及其不同属性的更多信息,其中包括实时价格和实时图表。
数字货币是什么时候开始的?
由于 2008 年金融危机,人们对去中心化金融的兴趣激增。比特币作为去中心化网络上的安全数字资产提供了一种新颖的解决方案。从那时起,许多其他代币 (例如 Internet Computer) 也诞生了。
Internet Computer 的价格今天会涨吗?
查看 Internet Computer 价格预测页面,预测未来价格,帮助您设定价格目标。

ESG 披露

ESG (环境、社会和治理) 法规针对数字资产,旨在应对其环境影响 (如高能耗挖矿)、提升透明度,并确保合规的治理实践。使数字代币行业与更广泛的可持续发展和社会目标保持一致。这些法规鼓励遵循相关标准,以降低风险并提高数字资产的可信度。
资产详情
名称
OKcoin Europe LTD
相关法人机构识别编码
54930069NLWEIGLHXU42
代币名称
Internet Computer Token
共识机制
Internet Computer Token is present on the following networks: ethereum, internet_computer. The Ethereum network uses a Proof-of-Stake Consensus Mechanism to validate new transactions on the blockchain. Core Components 1. Validators: Validators are responsible for proposing and validating new blocks. To become a validator, a user must deposit (stake) 32 ETH into a smart contract. This stake acts as collateral and can be slashed if the validator behaves dishonestly. 2. Beacon Chain: The Beacon Chain is the backbone of Ethereum 2.0. It coordinates the network of validators and manages the consensus protocol. It is responsible for creating new blocks, organizing validators into committees, and implementing the finality of blocks. Consensus Process 1. Block Proposal: Validators are chosen randomly to propose new blocks. This selection is based on a weighted random function (WRF), where the weight is determined by the amount of ETH staked. 2. Attestation: Validators not proposing a block participate in attestation. They attest to the validity of the proposed block by voting for it. Attestations are then aggregated to form a single proof of the block’s validity. 3. Committees: Validators are organized into committees to streamline the validation process. Each committee is responsible for validating blocks within a specific shard or the Beacon Chain itself. This ensures decentralization and security, as a smaller group of validators can quickly reach consensus. 4. Finality: Ethereum 2.0 uses a mechanism called Casper FFG (Friendly Finality Gadget) to achieve finality. Finality means that a block and its transactions are considered irreversible and confirmed. Validators vote on the finality of blocks, and once a supermajority is reached, the block is finalized. 5. Incentives and Penalties: Validators earn rewards for participating in the network, including proposing blocks and attesting to their validity. Conversely, validators can be penalized (slashed) for malicious behavior, such as double-signing or being offline for extended periods. This ensures honest participation and network security. The Internet Computer Protocol (ICP) uses a unique consensus mechanism called Threshold Relay combined with Chain Key Technology to ensure decentralized, scalable, and secure operations for its network. Core Components of ICP’s Consensus Mechanism: 1. Threshold Relay: Threshold Relay is a consensus protocol that enables the network to achieve finality without a traditional Proof-of-Work or Proof-of-Stake mechanism. It leverages a group of nodes called "the committee" to generate a random beacon that is used for the selection of the next block producer. The protocol is designed to provide scalability and speed while maintaining decentralization by allowing any node to join the consensus process. The key feature of Threshold Relay is that it utilizes a threshold signature scheme, where a group of nodes must collaborate to create a valid signature, ensuring that consensus is achieved even in the presence of faulty or malicious nodes. 2. Chain Key Technology: Chain Key Technology is used to manage the state of the Internet Computer, allowing it to scale effectively across a vast number of nodes while still providing fast and secure transaction finality. This technology enables the creation and management of many independent blockchains (also known as subnet blockchains), each with its own set of validators. Chain Key Technology allows the Internet Computer to support billions of smart contracts without compromising speed, as it facilitates quick communication between the subnets and enables cross-chain interoperability. 3. Canister Smart Contracts: The Internet Computer utilizes a decentralized model where the computation of canister smart contracts (which hold the application logic) occurs across different nodes in the network. These canisters can run autonomously and scale with the network’s growth. Finality and Security: • The consensus mechanism ensures finality once a transaction is validated, meaning that once a block is added, it cannot be reverted, providing the security required for high-stakes applications. • The use of Threshold Relay provides robust Byzantine Fault Tolerance (BFT), enabling the network to tolerate faulty or malicious behavior without compromising network integrity.
奖励机制与相应费用
Internet Computer Token is present on the following networks: ethereum, internet_computer. Ethereum, particularly after transitioning to Ethereum 2.0 (Eth2), employs a Proof-of-Stake (PoS) consensus mechanism to secure its network. The incentives for validators and the fee structures play crucial roles in maintaining the security and efficiency of the blockchain. Incentive Mechanisms 1. Staking Rewards: Validator Rewards: Validators are essential to the PoS mechanism. They are responsible for proposing and validating new blocks. To participate, they must stake a minimum of 32 ETH. In return, they earn rewards for their contributions, which are paid out in ETH. These rewards are a combination of newly minted ETH and transaction fees from the blocks they validate. Reward Rate: The reward rate for validators is dynamic and depends on the total amount of ETH staked in the network. The more ETH staked, the lower the individual reward rate, and vice versa. This is designed to balance the network's security and the incentive to participate. 2. Transaction Fees: Base Fee: After the implementation of Ethereum Improvement Proposal (EIP) 1559, the transaction fee model changed to include a base fee that is burned (i.e., removed from circulation). This base fee adjusts dynamically based on network demand, aiming to stabilize transaction fees and reduce volatility. Priority Fee (Tip): Users can also include a priority fee (tip) to incentivize validators to include their transactions more quickly. This fee goes directly to the validators, providing them with an additional incentive to process transactions efficiently. 3. Penalties for Malicious Behavior: Slashing: Validators face penalties (slashing) if they engage in malicious behavior, such as double-signing or validating incorrect information. Slashing results in the loss of a portion of their staked ETH, discouraging bad actors and ensuring that validators act in the network's best interest. Inactivity Penalties: Validators also face penalties for prolonged inactivity. This ensures that validators remain active and engaged in maintaining the network's security and operation. Fees Applicable on the Ethereum Blockchain 1. Gas Fees: Calculation: Gas fees are calculated based on the computational complexity of transactions and smart contract executions. Each operation on the Ethereum Virtual Machine (EVM) has an associated gas cost. Dynamic Adjustment: The base fee introduced by EIP-1559 dynamically adjusts according to network congestion. When demand for block space is high, the base fee increases, and when demand is low, it decreases. 2. Smart Contract Fees: Deployment and Interaction: Deploying a smart contract on Ethereum involves paying gas fees proportional to the contract's complexity and size. Interacting with deployed smart contracts (e.g., executing functions, transferring tokens) also incurs gas fees. Optimizations: Developers are incentivized to optimize their smart contracts to minimize gas usage, making transactions more cost-effective for users. 3. Asset Transfer Fees: Token Transfers: Transferring ERC-20 or other token standards involves gas fees. These fees vary based on the token's contract implementation and the current network demand. The Internet Computer Protocol (ICP) incentivizes network participants (validators, node operators, and canister developers) through various reward mechanisms and transaction fees. Here's a breakdown of the incentive mechanisms and applicable fees related to ICP: Incentive Mechanism: 1. Network Participation and Rewards: Validators: Validators are crucial for maintaining the integrity and security of the network. They stake ICP tokens to participate in consensus and are rewarded for validating blocks, maintaining the integrity of the decentralized network, and ensuring its performance. Rewards for validators are based on their participation in the consensus mechanism and their stake in the network. Node Operators: Node operators who maintain the physical infrastructure of the network (such as hardware and server resources) are also rewarded. These operators run the nodes that participate in the Threshold Relay and provide computational power to the network. 2. Canister Developers and Network Participants: Canister Smart Contracts: Developers of canisters (smart contracts) on the Internet Computer are incentivized through the creation of decentralized applications (dApps). Developers may also benefit from transaction fees generated by the usage of their dApps and the deployment of smart contracts on the network. Usage Fees: Users of decentralized applications (dApps) or canisters are incentivized to pay for their usage through fees. These fees are often paid in ICP tokens, and developers can receive a share of these fees based on the usage of their deployed applications. 3. Governance: The ICP Token is used for governance via the Network Nervous System (NNS), where holders of ICP tokens participate in decisions regarding the protocol, such as network upgrades, incentive adjustments, and the allocation of funds. Token holders are rewarded with the ability to influence the future of the network. 4. Staking Rewards: Staking: ICP token holders can participate in staking their tokens in the NNS, which influences network consensus and governance. By participating in staking, they help secure the network and are rewarded with staking rewards (a form of passive income). The staking rewards are given to token holders who participate in securing the network via the NNS. Applicable Fees: 1. Transaction Fees: Canister Calls: Every interaction with a canister (smart contract) on the Internet Computer incurs a transaction fee. These fees are typically paid in ICP tokens and are used to cover the computational resources required to process requests, store data, and manage execution. Fee Structure: Transaction fees depend on the complexity and resources consumed by the canister call or network operation. For example, operations that require more computational power or data storage may incur higher fees. 2. Storage Fees: Canister Data Storage: Developers and users who deploy applications on the Internet Computer are required to pay fees for storing data. These fees ensure that network resources are used efficiently and that canisters do not waste storage space. The cost of storage is typically paid in ICP tokens. 3. Governance Participation Fees: Voting and Proposal Fees: Participation in the governance process via the NNS (Network Nervous System) may require a small fee, depending on the type of governance action (such as submitting a proposal or voting). These fees ensure that governance is distributed and prevent spam attacks on the governance system. 4. Node and Validator Fees: Fees for Node Operations: Node operators who provide computational power to the network may incur costs related to maintaining hardware and operating nodes. These fees are partially offset by rewards for providing network resources.
信息披露时间段的开始日期
2024-03-12
信息披露时间段的结束日期
2025-03-12
能源报告
能源消耗
5834160.00000 (kWh/a)
可再生能源消耗
16.500000000 (%)
能源强度
0.00720 (kWh)
主要能源来源与评估体系
To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from the European Environment Agency (EEA) and thus determined.
能源消耗来源与评估体系
The energy consumption of this asset is aggregated across multiple components: For the calculation of energy consumptions, the so called “bottom-up” approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. Based on the crypto asset's gas consumption per network, the share of the total consumption of the respective network that is assigned to this asset is defined. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation.
排放报告
DLT 温室气体排放范围一:可控排放
0.00000 (tCO2e/a)
DLT 温室气体排放范围二:外购排放
2047.79016 (tCO2e/a)
温室气体排放强度
0.00253 (kgCO2e)
主要温室气体来源与评估体系
To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from the European Environment Agency (EEA) and thus determined.
免责声明
本页面的社交内容 (包括由 LunarCrush 提供支持的推文和社交统计数据) 均来自第三方,并按“原样”提供,仅供参考。本文内容不代表对任何数字货币或投资的认可或推荐,也未获得欧易授权或撰写,也不代表我们的观点。我们不保证所显示的用户生成内容的准确性或可靠性。本文不应被解释为财务或投资建议。在做出投资决策之前,评估您的投资经验、财务状况、投资目标和风险承受能力并咨询独立财务顾问至关重要。过去的表现并不代表未来的结果。您的投资价值可能会波动,您可能无法收回您投资的金额。您对自己的投资选择自行承担全部责任,我们对因使用本信息而造成的任何损失或损害不承担任何责任。提供外部网站链接是为了用户方便,并不意味着对其内容的认可或控制。请参阅我们的 使用条款风险警告,了解更多详情。
展开更多

ICP 计算器

USDUSD
ICPICP